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Introduction 2
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Instrument operation principle

Perilune ≈14 km

[5] Cohen, B. A. et al., “Payload Design for the Lunar Flashlight Mission,” Proc. Lunar and Planetary Science Conference 48, 1709 (2017).
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Receiver optical design

Receiver concept:

Off-axis paraboloid 
mirror

Single pixel detector 
at focal position

Incoming light

Design phases:

Selection of the mirror focal length and the detector active area1

2 Stray light analysis to minimize the background
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Receiver optical design

Mirror Focal Length (FL) and diameter (Ø) of the detector active area :

Minimization of detected solar illumination of the Moon surface (background)

Maximization of the lasers photons detection efficiency

Driven factors:

Beams divergence profile 

𝐹𝑂𝑉 = 2 × 𝑎𝑟𝑐𝑡𝑎𝑛
∅

2 × 𝐹𝐿

∅ = 1 𝑚𝑚 𝐹𝐿 = 70 𝑚𝑚 𝐹𝑂𝑉 = 0.82°
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Receiver optical design

Stray light analysis:

Goal: Minimization of detected solar illumination of the Moon surface outside the receiver FOV

Optical design:
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Receiver optical design 7

Rotationally average Point-Source-Transmittance function:

∅ = 1 𝑚𝑚

𝐹𝐿 = 70 𝑚𝑚

𝐹𝑂𝑉 ≈ 0.8°
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Receiver optical design

Lasers-to-receiver pointing instability :

8



Receiver optical design 8

Lasers-to-receiver pointing instability :
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Lasers-to-receiver pointing instability :
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Lasers-to-receiver pointing instability :
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Lasers-to-receiver pointing instability :
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Lasers-to-receiver pointing instability :

Lasers-to-receiver pointing instability: 0.3 mrad



Conclusions and perspectives 9

This will be one of the first instruments onboard a CubeSat performing 
science measurements beyond low Earth orbit and the first planetary 
mission to use multi-band reflectometry from orbit.

Design of a NIR optical receiver based on an aluminum paraboloid mirror 
focusing incoming light onto a single detector.

Main challenge: design optimization (detector diameter, focal length, 
vanes/baffles) to minimize the overall uncertainty on the measurements.

Next steps: receiver optical design update, opto-mechanical design, 
manufacture, calibration & characterization, integration to the CubeSat.  



Thank you for your

attention!
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Stray light – Model limitations

• This includes only 2 levels of scatter (any ray which attempts to scatter 

a 3rd time is stopped)

– This is not a major limitation, since the energy remaining in such a ray 

will be quite small

• The number of rays incident on the system is approximately 2 rays per 

sq mm

– Since all relevant structures are at least 2.5mm in the smallest 

dimension, this should be adequate

• BSDFs are always approximate, even well characterized surfaces like 

Z306 can vary by nearly a factor of two between various measurements



Receiver temperature ranges

Assembly

AFT
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Flight

Temperature)
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(Flight
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Cold/Hot (°C)

Non-Op

Cold/Hot (°C)

Op

Cold/Hot (°C)
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Cold/Hot (°C)
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PST theory

• The PST is the ratio of the average detector irradiance to the incident 
irradiance, computed as a function of angle:

• The source irradiance at normal incidence is typically set to unity.

• This PST can be used as a transfer function: the total amount of light 
(stray or otherwise) reaching the focal plane is
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PST humps

This feature is due to scatter from the inside
of the orange housing
Path:

mirror -> housing -> mirror -> detector
A 100mm baffle would partially blocks this path.



Effect of extended baffles and filter on PST

With Filter

Without Filter



Effect of detector size on PST



Contamination effect on the PST

• Percent Area Coverage (PAC) = percent of surface which is obscured 

by particulates

• CL 450 = 0.164 PAC

• CL 600 = 0.696 PAC



PST of current optical design



Manufacture tolerances

3D decenter of Detector: 0.5 mm

3D decenter of mirror: 2.0 mm

Mirror focal length 1.0 mm

Mirror tip/tilt:  0.05 rad

Detector tip/tilt: 0.05 rad



Scatter model

• Empirically derived from 

measurement

• No intrinsic wavelength dependence

• Lorentzian around specular ray

• Linear-shift invariant: BSDF 

depends on the difference (b-b0) 

between the specular and scattered 

rays
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Scatter model

Mirror 30Å Surface Roughness



Scatter model

Mirror Particulates CL450

Mirror Particulates CL600



Scatter model

Z306 Diffuse Black Paint



Bare Al Coating (Mirror) - Reflectivity



Systematic errors due to pointing instabilities

𝑃𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑,𝜆 = 𝑃𝑒𝑚𝑖𝑡𝑡𝑒𝑑,𝜆 × 𝑅𝜆× PST
𝜆
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𝜆
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𝑦
)d𝜃

𝑥
𝑑𝜃

𝑦

𝑆𝐸(%) =
PST𝜆(𝜃𝑥 , 𝜃𝑦)LDP𝜆(𝜃𝑥 , 𝜃𝑦)d𝜃𝑥𝑑𝜃𝑦 − PST𝜆(𝜃𝑥 − 𝛿𝑥 , 𝜃𝑦 − 𝛿𝑦)LDP𝜆(𝜃𝑥 , 𝜃𝑦)d𝜃𝑥𝑑𝜃𝑦

PST𝜆(𝜃𝑥 , 𝜃𝑦)LDP𝜆(𝜃𝑥 , 𝜃𝑦)d𝜃𝑥𝑑𝜃𝑦
× 100

𝛥 = 𝑚𝑎𝑥
PST𝜆(𝜃𝑥 , 𝜃𝑦)LDP𝜆(𝜃𝑥 , 𝜃𝑦)d𝜃𝑥𝑑𝜃𝑦 − PST𝜆(𝜃𝑥 − 𝛿𝑥 , 𝜃𝑦 − 𝛿𝑦)LDP𝜆(𝜃𝑥 , 𝜃𝑦)d𝜃𝑥𝑑𝜃𝑦

PST𝜆(𝜃𝑥 , 𝜃𝑦)LDP𝜆(𝜃𝑥 , 𝜃𝑦)d𝜃𝑥𝑑𝜃𝑦
× 100

∀ 𝛿𝑥
2+𝛿𝑦

2≤𝐴𝑆



Characterization and Calibration

Receiver responsivity VS wavelength, detector temperature and receiver structure temperature

Detector bias current VS detector temperature and receiver structure temperature

Characterization/calibration
conditions :

• Optical input power the
range: [0.5, 50] nW

• Operating temperature
range of the detector:
[-165,-41] °C

• Operating temperature
range of the receiver
structure: [-65,7] °C

• Vacuum of 10-5 Torr

PST VS incidence angles, detector temperature and receiver structure temperature


